Somewhat Non-committing Encryption and Efficient Adaptively Secure Oblivious Transfer

نویسندگان

  • Juan A. Garay
  • Daniel Wichs
  • Hong-Sheng Zhou
چکیده

Designing efficient cryptographic protocols tolerating adaptive adversaries, who are able to corrupt parties on the fly as the computation proceeds, has been an elusive task. In this paper we make progress in this area. First, we introduce a new notion called semi-adaptive security which is slightly stronger than static security but significantly weaker than fully adaptive security. The main difference between adaptive and semi-adaptive security is that semi-adaptive security allows for the case where one party starts out corrupted and the other party becomes corrupted later on, but not the case where both parties start out honest and become corrupted later on. As such, semi-adaptive security is much easier to achieve than fully adaptive security. We then give a simple, generic protocol compiler which transforms any semi-adaptively secure protocol into a fully adaptively secure one. The compilation effectively decomposes the problem of adaptive security into two (simpler) problems which can be tackled separately: the problem of semi-adaptive security and the problem of realizing a weaker variant of secure channels. We solve the latter problem by means of a new primitive that we call somewhat non-committing encryption resulting in significant efficiency improvements over the standard method for realizing secure channels using (fully) non-committing encryption. Somewhat non-committing encryption has two parameters: an equivocality parameter ` (measuring the number of ways that a ciphertext can be “opened”) and the message sizes k. Our implementation is very efficient for small values `, even when k is large. This translates into a very efficient compilation of semiadaptively secure protocols for tasks with small input/output domains (such as bit-OT) into fully adaptively secure protocols. Indeed, we showcase our methodology by applying it to the recent Oblivious Transfer protocol by Peikert et al. [Crypto 2008], which is only secure against static corruptions, to obtain the first efficient, adaptively secure and composable OT protocol. In particular, to transfer an n-bit message, we use a constant number of rounds and O(n) public key operations. ? Partial work was carried out when the first author was at Bell Labs and the second and the third authors were visiting Bell Labs. ?? Research supported by NSF grants 0447808 and 0831306.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Adaptively Secure Multiparty Computation with a Short CRS

In the setting of multiparty computation, a set of mutually distrusting parties wish to securely compute a joint function of their private inputs. A protocol is adaptively secure if honest parties might get corrupted after the protocol has started. Recently (TCC 2015) three constant-round adaptively secure protocols were presented [CGP15, DKR15, GP15]. All three constructions assume that the pa...

متن کامل

One-Sided Adaptively Secure Two-Party Computation

Adaptive security is a strong security notion that captures additional security threats that are not addressed by static corruptions. For instance, it captures real-world scenarios where “hackers” actively break into computers, possibly while they are executing secure protocols. Studying this setting is interesting from both theoretical and practical points of view. A primary building block in ...

متن کامل

Removing Erasures with Explainable Hash Proof Systems

An important problem in secure multi-party computation is the design of protocols that can tolerate adversaries that are capable of corrupting parties dynamically and learning their internal states. In this paper, we make significant progress in this area in the context of password-authenticated key exchange (PAKE) and oblivious transfer (OT) protocols. More precisely, we first revisit the noti...

متن کامل

On Black-Box Complexity of Universally Composable Security in the CRS Model

In this work, we study the intrinsic complexity of black-box Universally Composable (UC) secure computation based on general assumptions. We present a thorough study in various corruption modelings while focusing on achieving security in the common reference string (CRS) model. Our results involve the following: • Static UC secure computation. Designing the first static UC secure oblivious tran...

متن کامل

On Black-Box Complexity of UC Security

In this work, we study the intrinsic complexity of black-box UC secure computation based on general assumptions. We present a thorough study in various corruption modelings while focusing on achieving security in the CRS model (and related setups). Our results involve the following: • Static UC secure computation. Designing the first static UC secure oblivious transfer protocol based on public-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008